If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7u^2+u-18=0
a = 7; b = 1; c = -18;
Δ = b2-4ac
Δ = 12-4·7·(-18)
Δ = 505
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{505}}{2*7}=\frac{-1-\sqrt{505}}{14} $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{505}}{2*7}=\frac{-1+\sqrt{505}}{14} $
| 8x-2=7x-2 | | x-0.2=64 | | X^2-7x+21=3x | | 7-13x=-7x-7x | | 5d+10=4 | | 256=2w+4w-14 | | 4n+2n=36 | | 250=4-y | | 7(2x+7)=133 | | 1/2(x+8)=31 | | 462=2w+4w-14 | | 8+2+x=68 | | 5k=1+2k | | -9-(9x-6)=(4x+6) | | g+2/3A=B | | 5x-2+2+2x=67 | | 392x+40=60 | | 2,800,000*365=x | | 1/7-5b=7 | | 6-6x+x=61 | | 2x-9+6x=79 | | 43=3(4r-1)-2r | | 43=3(4r-1)-2 | | 147t^2-12=0 | | -f−2=7+2f | | 4x-6+2x=28 | | -43=3(4r-1)-2r | | 7j=3+6j | | V=3.14r2 | | -23a-6=6 | | -4(2x+2)=-12+4 | | W+6w+1=15 |